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1 Introduction

A key mechanism responsible for the instability of high-speed boundary layers
are the high-frequency modes discovered by Mack [1]. These modes are primar-
ily acoustic in nature, are always present if the edge Mach number is sufficiently
large, and are the dominant instability mechanism when the wall temperature is suf-
ficiently low compared to the recovery temperature. The propagation of acoustic
waves within the boundary layer is profoundly influenced by the velocity and sound
speed gradients created by the action of viscosity and heat conduction within the
layer. These gradients form a waveguide that may trap acoustic waves and provide
a mechanism for the formation of large amplitude disturbances. This suggests that
geometrical acoustic analysis of these waveguides can provide insights into the po-
tential for boundary layer acoustic instability. In this work, we outline the basics
of geometric acoustics, apply the ray-tracing technique to example problems, and
then high-speed boundary layers. The refractive behavior of different high-speed
boundary layer profiles is compared.

Our approach follows the classical ray-tracing approach [2, 3] to geometrical
acoustics in which the propagation of a wavefront is calculated by computing the
paths (rays) along which a point on the wavefront moves. From a physical point of
view, geometrical acoustics is a high-frequency approximation that is valid when:
1) the wavelengths are small compared to the geometrical features in the flow, in
this case the height of the boundary layer; 2) the amplitude and front curvature
do not vary too rapidly along the wavefront; 3) cusps or folds (caustics) do not
form in the wavefront. In high-speed boundary layer profiles, the most amplified
acoustic wavelength is known to be approximately 2 boundary layer thicknesses [1]
and caustics are known to form [4] so we acknowledge from the outset that our
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results may be limited in quantitative applicability and will be more qualitative in
nature.

The rate of change of the position of a pointxp on the wave-front can be written
as,

dxpi

dt
= nic+ vi = vray,i (1)

wherevi is the local velocity,ni is the unit normal to the wave-frontτi (Fig. 1).
The speed of the wave-front normal to itself (c+ nivi) is in general different than
the magnitude of the ray velocity|nic+ vi|. The evolution of the unit normalni is

xi
nic

vi

nic+ vi = vray,i

τi at t

τi at t+∆t

Fig. 1 Vector addition to find the velocity of the rays.

cumbersome to compute directly so we use the formulation by Pierce [2] in terms
of the wave-slowness vector (si =▽τi) components.

dxi

dt
=

c2si

Ω
+ vi, (2a)

dsi

dt
=−

Ω
c

dc
dxi

−
3

∑
j=1

s j
dv j

dxi
, (2b)

where,
Ω = 1− visi, (3a)

si =
ni

c+ nivi
. (3b)

2 Example Problems

Solutions to two example problems are presented here to provide basic insight into
geometric acoustics as well as test our numerical methods. The first test problem is
an adaptation from the work of Goodman and Duykers [5]. Analytic solutions for
ray paths are found for a parabolic sound speed profile of the form c = c0+α2y2,
with 1/c2 = (1/c2

0)(1− y2/L2), andL =
√

c0/2α2. In the example presented here,
c0 = 340 m/s,α =

√

c0/10, and a rigid boundary aty = 0 is imposed. The solution
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for a ray path with initial angle of inclination to the horizontalθ0, is

y/L = sinθ0sin(x/(Lcosθ0)) . (4)

This solution (solid line) and results from numerically integrating Eqs. 2 (circular
markers) are shown to agree favorably in Fig. 2. In this scenario, sx is a constant,
per Eq. 2b. To calculate the point at which acoustic rays are refracted back to the
surface, it is recognized that the ray direction is parallelto the unit normal,n, when
horizontal [2], and from Eq 3b,

sx =
cosθ0

c0+ cosθ0vx0
= ch + vxh, (5)

where the subscript 0 indicates where local value at ray origin, and the subscripth
indicates local value where the ray is horizontal. Using this observation, the wall
normal distance where the ray is refracted back to the surface can be obtained al-
gebraically. The predicted height (dashed line) shows favorable agreement with the
analytic and numerical results in Fig. 2. Note the acoustic rays are refracted towards
a sound speed minimum, consistent with the vertical component of Eq. 2b.
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Fig. 2 A slight modification to the problem posed by Goodman and Duykers [5], with the ana-
lytical solution (solid line), numerical integration (circular markers), and predicted turning height
(dashed line) showing good agreement. Initial angle of inclination of acoustic ray to the surface:
θ0 = 30,60. The sound speed profile is plotted on the left.

The second test problem is ray tracing through the Sound Fixing and Ranging
(SOFAR) channel as previously computed by Munk [6], who assumed that the
sound speed in the ocean,c, varies asc = c(y) = c1(1+ ε(η(y) + e−η(y) − 1)),
due to temperature and density gradients, wherec1 = 1.492 km/s,ε = 0.0074,
η = η(y) = (z− z1)/(z1/2), andz1 = 1.3 km. Numerical integration of Eqs. 2 with
this sound speed profile gives reasonable visual agreement with Munk’s results, al-
though precise quantitative comparison is not possible. Acoustic rays are observed
to be refracted to a sound speed minimum, which is consistentwith Eq. 2b.
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Fig. 3 Replication of the case done by Munk [6], tracing acoustic rays through the SOFAR chan-
nel. The distance marks depth from the ocean surface, and theinitial angle of the ray to the hori-
zontal is denoted by a number overlaid on the line.

3 High-speed Boundary Layers

Geometrical acoustic implications for a selection of high-speed boundary layer pro-
files are presented in this section. Boundary layer profiles are computed using the
similarity solution for a laminar, compressible, perfect-gas flow on a flat plate [7].
It was noted in the previous section that acoustic rays tend to be refracted towards
sound speed minima. The mean flow of the boundary layer modifies this and the
rays are refracted towardu+ c minima, consistent with the vertical component of
Eq. 2b. Three different profiles are presented in Figs. 4(a),4(b), and 4(c) to illustrate
the range ofu+ c profiles that are possible.
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Fig. 4 a: Boundary layer profile forME = 1, γ = 7/5, TW = Tad . b: Boundary layer profile for
ME = 6, γ = 7/5, TW = Tad . c: Boundary layer profile forME = 6, γ = 7/5, TW = Tad/10. Each
velocity profile (u/uE ) is normalized by the edge value (dash-dot). Each sound speed profilec/cW

is normalized by the value at the wall (dashed). Each combined profile (u+ c)/(uE + cE) is nor-
malized by the edge values (solid).

Using Eq. 5 and assuming that the flow is locally parallel, themaximum angle
that is refracted back to the surface can be found. We postulate that the larger this
angle, the more unstable the boundary layer due to the largeramount of acous-
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tic energy trapped within the layer. The maximum angle of inclination is com-
puted for rays originating at the surface of the plate for a range of Mach numbers
(ME = 0.25−8) with an adiabatic wall and three different ratios of specific heats in
Fig. 5(a). The maximum angle increases with increasing Machnumber, reaching a
constant value forME ≥ 5. Wall temperature ratio (TW/Tad, whereTad is the adia-
batic wall temperature) is another important parameter in determining the maximum
initial angle of inclination for rays originating at the surface of the plate (Fig. 5(b));
atME = 6, colder walls are observed to trap more acoustic rays. In Fig. 5(c), the wall
normal distance of the origin of the acoustic ray is varied for an adiabatic plate with
ME = 6. Fewer rays are trapped as the ray origin is translated fromthe surface. The
results in Figs. 5(a), 5(b), and 5(c) do not change withRex because the flow field is
assumed to be locally parallel and the boundary layer profiles are self-similar.

The non-parallel nature of the flow field can be included by interpolating the ve-
locity and sound speed profiles calculated from the similarity solution for a certain
range ofRex and solving Eqs. 2. In Fig. 6, ray traces originating from thesurface
of an adiabatic flat plate withME = 1 andγ = 7/5 with an initial angle of inclina-
tion of θ0 = 56,57,58 are observed to bracket the value predicted in Fig. 5(a). The
edge Mach number is increased to 6 for the rays in Fig. 7 and raytraces with an
initial angle of inclination ofθ0 = 67,68,69 bracket the maximum value predicted
in Fig. 5(a). Changing the boundary condition at the wall toTW = Tad/10 should
increase the maximum initial angle of inclination per Fig. 5(b). This is reflected in
the rays with an initial angle ofθ0 = 82,83,84.
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Fig. 5 a: Largest angle of inclination to the plate of acoustic ray that is refracted back to the
surface,ME = 0.25−8, γ = 6/5,7/5,5/3, TW = Tad . b: Largest angle of inclination to the plate
of acoustic ray that is refracted back to the surface,ME = 6, γ = 6/5,7/5,5/3, TW = KTad , where
K is varied between 10−2 and 5. c: Largest angle of inclination to the plate of acoustic ray that is
refracted back to the surface at different wall normal origins,ME = 6, γ = 6/5,7/5,5/3, TW = Tad .
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Fig. 6 Ray traces forME = 1, γ = 7/5, TW = Tad , with θ0 = 56,57,58 atRex0 = 1×105.
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Fig. 7 Ray traces forME = 6, γ = 7/5, TW = Tad , with θ0 = 67,68,69 atRex0 = 1×105.
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Fig. 8 Ray traces forME = 6, γ = 7/5, TW = Tad/10, withθ0 = 82,83,84 atRex0 = 1×105.

4 Conclusion

Ray-tracing in high-speed boundary layers has been used to explore the potential for
acoustic energy trapping as function of edge Mach number, wall temperature ratio,
and thermodynamic parameters. We proposed a figure of merit for acoustic energy
trapping as the critical angle of inclination for rays originating in the boundary that
are trapped, i.e., these rays always stay within the boundary layer. Using this con-
cept, we find that an increasing amount of acoustic energy is trapped with increasing
edge Mach number (ME ), and decreasing wall temperature ratio (TW/Tad). These
trends agree qualitatively with the results of high-speed boundary layer stability
calculation by Mack [1].
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